
Finite Buffers and Fast Multicast

Peter B. Danzig

Computer Science Division
University of California, Berkeley

Berkeley, California 94 720

Abstract. When many or all of the recipients of a multi
cast message respond to the rrudticast' s sender, their responses
may overflow the sender's available buffer space. Buffer overflow
is a serious, known problem of broadcast-based protocols, and
can be troublesome when as few as three or four recipients
respond. We develop analytical models that calculate the
expected number of buffer overflows that can be used to estimate
the number of buffers necessary for an application. The common
cure for buffer overflow requires that recipients dela.y their
responses l7y some random amount of time in orde~ t? increas~
the minimum spacing between response messages, elUTUnate colli
sions on the network, and decrease the peak processing demand
at the sender. In our table driven algorithm, the sender tries to
minimize the multicast's la.tency, the elapsed time between its ini
tial transmission of the multicast and its reception of the final
response, given the number of times (rounds) it. is willing. to
retransmit the multicast. It includes in the multiCast the ttme
interval over which it anticipates receiving the response, the
round timeout. We demonstrate that the latency of single round
multicasts exceeds the la.tency of rrudtiple round multicasts. We
show how recipients minimize the sender's buffer overflows by
independently choosing their response times as a function of the
round's timeout, sender's buffer size, and the number of other
recipients.

1. Introduction

A multicast message is a message simultaneously sent
(broadcast) to a group of recipients. When a recipient s~te
receives a multicast transmission, it formulates and forwards tts
response to the multicast's original sender. These numerous,
closely spaced, responses may overwhe~ the mu~tic~t's sen~er,
causing buffer overflow in its network mterface, m 1ts operatmg
system, or in its outside-the-kernel communication protocol
processes. If the operating system implements protocol process
ing in the user's address space [1], responses passing through the
operating system may overflow buffers in the user process that

This work has been supported in part by the Defense Advanced
Research Projects Agency (DoD), ARPA Order No. 4871, monitored by
the Naval Electronic Systems Command under Contract No. N00039-84-
C-0089 and by an American Electronics Association Faculty Development
Fellowship. The views and cooclusions contained in this ~ent ~re
those of the author and should not be interpreted as representmg offiaal
policies, either expressed or implied, of any of the sponsoring organiza
tions or of the U.S. GovernmenL

initiated the multicast because this is swapped out, blocked, or
does not receive adequate processor time. We illustrate these
overflow points in Figure 1.

Since real systems have finite memory, they have finite
buffers. However most finite buffer queueing analyses apply only
to stationary, homogeneous arrival processes; little work exists in
the analysis of finite buffer systems [2] [3] [4] with non
stationary, heterogeneous arrival processes. Standard blocking
system analyses from text books do not apply to this problem
because they deal with stationary Poisson and stationary general
arrival processes. The arrival process of responses to a multicast is
neither stationary nor homogeneous. It is not homogeneous since
the responses come from both fast and slow machines; it is not
stationary since the arrival rate decreases as responses are
received. In this paper, we calculate buffer overflow losses due to
responses from multicast transmissions. Having calculated the
number and distribution of losses, we describe an algorithm that
minimizes the time to receive all responses to a multicast given
that the sender is willing to retransmit a certain number of times.
In the remainder of this section we define terminology, present
several situations for which multicast is appropriate, and describe
our model of the network.

We say the sender sends a multicast to the recipients and
that each recipient responds with its response. The elapsed time

u
Systcm
Boundary

Nctwcd:.
Systcm
Boundary

Physical Network

Multicast Sender

Figure 1. Where losses may occur.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Finite Buffers and Fast Multicast

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
When many or all of the recipients of a multicast message respond to the multicast’s sender, their
responses may overflow the sender’s available buffer space. Buffer overflow is a serious, known problem of
broadcast-based protocols, and can be troublesome when as few as three or four recipients respond. We
develop analytical models that calculate the expected number of buffer overflows that can be used to
estimate the number of buffers necessary for an application. The common cure for buffer overflow
requires that recipients delay their responses by some random amount of time in order to increase the
minimum spacing between response messages, eliminate collisions on the network, and decrease the peak
processing demand at the sender. In our table driven algorithm, the sender tries to minimize the
multicast’s latency, the elapsed time between its initial transmission of the multicast and its reception of the
final response, given the number of times (rounds) it is willing to retransmit the multicast. It includes in the
multicast the time interval over which it anticipates receiving the response, the round timeout. We
demonstrate that the latency of single round multicasts exceeds the latency of multiple round multicasts.
We show how recipients minimize the sender’s buffer overflows by independently choosing their response
times as a function of the round’s timeout, sender’s buffer size, and the number of other recipients.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

between the instant the multicast is sent and the instant a
recipient's response is received is the recipient's response time.
The probability distribution function of the recipient's response
time is the response time distribution. The probability distribu
tion function of the time devoted by the sender to process a
response and free the buffer in which it is stored is the sender's
service time distribution. Additional time that a recipient holds its
already calculated response before sending it to the sender is the
recipient's backoff time. The number of times the sender rebroad
casts the message is the number of multicast rounds. The time
window associated with each round during which the sender col
lects responses is the round's timeout, see Figure 2. We treat
responses that arrive after the round's timeout expires as losses
during that round and assume their response time is resampled for
each subsequent round. The elapsed time between the sender's
initial transmission of the multicast and its receipt of the last
responses is the multicast latency. We do not measure time in
seconds or in milliseconds, but rather treat it as a unitless quantity.
We require, however, that the service time and response time dis
tributions be expressed in identical unit systems.

1.1. Our Model of the Network

The analyses in the following sections assume (1) the net
work is unreliable, and some sites may not hear transmissions
received at other sites; (2) except where noted, the network is oth
erwise idle; (3) messages do not collide on the wire; and (4)
except where noted, messages require no transmission time.
Equivalently, assumptions 3 and 4 say the network bandwidth is
infinite. These assumptions make our analysis possible, and tend
to overestimate the number of buffer overflows experienced in
practice for the following reasons. Competing network traffic
gives the sender extra time to service its buffers. Ignoring mes
sage length permits responses to arrive closer together than physi
cally permitted by the network. Ignoring collisions and their
prescribed rescheduling reduces the time period over which the
responses arrive. Since collisions do not occur on ring networks,
these analyses perhaps better model rings than CSMA/CD net
works. Finally (5), we assume that all recipients of a multicast
respond to the sender if only to acknowledge that they correctly
received the message.

Successes

Losses

6 Recipients

First Ro~md Second Round Third Ro1md
,, ___ _. '-1 __ _

~l:- l~L
~~

Miss4 Miss2

'
Finished

. Latency .
~--~

Buffer Full I Multicast ! Response Arrives

Figure 2. Three rounds of multicasL

1.2. Why Overflow is Important

Speed mismatches at the interface of system layers cause
buffer overflow. The bit rate of fiber optic networks exceeds the
rate at which data can be copied into most computer's memory
and definitely exceeds the rate at which the computer's protocol
processing runs. These speed mismatches will always exist.
Although various proponents of broadcast-based protocols believe
that the problem of buffer overflows is solved in practice, this is
not true. Let us review their arguments.

Although many existing network interfaces can not keep
pace with the network and possess few buffers, some argue that
interface technology is improving and buffer overflow at the inter
face will not be a problem in the near future. While true for the
slow Ethernet, we argue that as interface technology advances,
network speeds are advancing many times faster, and these prob
lems will reappear. FDDI, a 100 MBit/Sec ring network, exceeds
the the memory access speed of most existing computers. Since a
multicast's responses come from many computers and outstrips
the rate at which a single computer can send messages, these
responses will have to be buffered in the interface. The cost of
high speed buffer memory will limit the buffer size within these
interfaces, and buffer overflow at the interface will again be a
problem. Regardless of network speed, the various computers on a
network will always have disparate speeds and buffering capacity.
Fast computers must communicate with slow computers. Histor
icly, interface technology lags behind the introduction of new net
works.

Some argue that the number of acknowledgments can be
reduced. The ordered broadcast algorithms proposed by Chang
and Maxemchuk [5] eliminate most acknowledgements because
recipients do not respond to the sender. The number of ack
nowledgements is a tunable parameter. However, their algorithms
suffer long delivery latency times, are complex, and do not apply
to situations where the recipients must respond by transmitting
data to the sender.

Others argue that acknowledgments can be missed. The V
kernel deterministically missed two out of four and one out of
three responses [6], Cheriton says this is not a problem as he
needs only the first response, but not everyone needs only the first,
or the first few responses.

We must understand the fundamental statistics behind
buffer overflow to address the problem adequately, wherever it
occms. Buffer overflow can occur within the operating system
and protocol processing processes. For example, the Berkeley 4.3
BSD Unix implementation of DARPA's TCP!IP [7] protocol
devotes only 4 kilobytes (by default) to protocol buffer space [8],
and such a small buffer can easily overflow. Throwing memory at
the problem wastes resources and may not be possible in small
systems found, for example, on factory floors.

1.3. Previous Work

Although many distributed systems employ broadcast and
broadcast-based multicast, researchers have lent little attention to
''backoff'' algorithms. Gusella and Zatti [9] employed backoff to
reduce Ethernet collisions.. Recipients held their responses for an
additional random delay drawn from the uniform distribution on
some interval. Our problems differ fundamentally. We minimize
the expected time to collect all responses to a multicast, explicitly
introducing the number of times the sender may retransmit the
multicasL The system designer chooses the number of
broadcast-based retransmissions that he will endure (Additional
broadcasts extraneously interrupt those recipients that have

successfully responded). Knowing this, the number of buffers
available, and the sender's service time distribution, we minimize
the expected number of buffer overflows by deriving each round's
optimal timeout and recipients' optimal common arrival time dis
tribution. Recipients choose their backoff functions such that the
combination of their natural response time distribution and back
off time function is distributed with this optimal distribution. We
assume that the sender includes a bit-map of successfully ack
nowledged sites with each retransmission. Tills processes can be
approximated and implemented in real systems.

1.4. Outline of The Paper

In Section 2, we consider overflow of single buffer sys
tems. This illustrate the techniques we use to analyze overflow of
multiple buffer systems and calculate the expected number of
buffer overflows (back-to-hack message loss) of single buffer sys
tems. We repeat these analyses for several response time and
buffer service time distributions. In Section 3 we derive a
dynamic program that calculates the expected number of overflow
losses for multiple buffer systems with general response time and
exponential buffer service time distributions and for exponential
response time and deterministic service time distributions. In
Section 4, we pose the problem of finding the optimal timeout,
common arrival distribution and backoff function that minimizes
the expected number of buffer overflows during a round of multi
cast. For two recipients, exponential buffer service time, and a
one buffer system, we derive the exact optimal response time dis
tributio~ that minimizes the expected number of losses for a given
~und ~eout. We apply. these concepts in several examples.
Fmally, m Section 5 we revrew our findings and oudine our future
research plans.

2. Buffer Overflow of Single Buffer Systems

Th~ number of buffer overflows depends upon the recipient
response time and buffer service time distributions. We restrict
our analysis to single buffer systems in this section because they
are easier to analyze than multiple buffer systems, and because we
can express their expected number of buffer overflows in closed
form. w~ begin with the analysis of systems with preassigned
:esponse mst.ants. ~er explaining why preassigned response
mstants are nnpractlcal, we devote the rest of the section to
analy~~ multicast systems with independent, identically distri
buted (1.1.d.) response time distributions. Single buffer systems
suffer overflow if the interarrival time between subsequent
responses, the back-to-back inter-message time, is less than the
buffer service time. Borrowing the notation of queueing theory,
we denote a multicast to N recipients, which respond with com
mon response time distribution R, to a K-buffer server with ser
vice time distributionS, as an RN IS 11/K system.

We defer the analysis of exponential response time,
exponential buffer service time distributions to Section 3, the dis
cussion of multiple buffers systems, and start by analyzing con
stant buffer service time systems. Constant service time models
network interface behavior well. The time to move a message
from the network interface to the operating system is the sum of
the interrupt service latency and the time for the DMA transfer
between interface and memory. If the responses are of equal size,
this time is roughly constant (Some interfaces do not buffer
entire messages, buffering a few bytes at a time in a FIFO
instead.)

2.1. Preassigned Response Instants, DN/M/1/1

.. In theory, we could assign a response instant Y; to each
recrp1ent. For example, we could assign to each recipient i , a
unique instant i 0 at which it should respond to the multicast
sender. This system is easily modeled as its interarrival times are
c~nstant If the buffer service time is exponentially distributed
wrth mean 1/J.L, then the expected number of overflows is the
expected number of buffer service time intervals longer than 8.
Using the method of indicator variables introduced below, we can
show that

N

E[Losses]= L e-lil' = (N-1) e-lift.
j:!J.

If the buffer service time is a constant ~. no overflow
occurs when 0 > ~. Although preassigning response instants exhi
bits few losses, it requires maintaining a group list, requires accu
rate deadline scheduling, assumes that all recipients can calculate
their responses before their mandated response instant expires,
and can be unnecessarily slow when we do not require that all
recipients respond. To illustrate this last point, consider the prob
lem of finding a lighdy-loaded site for balancing. Theimer [10]
suggests that sites schedule their responses proportionally to their
~oads and ?ot respond at all if they are unwilling to accept more
JObs: Assrgned response instants increase the expected time to
recerv~ a sm~ n~ber of responses, and is too rigid of a policy.
We will consrder 1.1.d. random, response time distributions for the
remainder of this section.

2.2. Upper Bound for MN/D/1/1 Systems

Each recipient i responds at instant y; independently of
other recipients, where y; is drawn from the exponential distribu
tion with mean VI..,

Pr (y; ~ t) = F (t) = 1- e -'A.t.

We employ order statistics [11] to calculate the expected
number of buffer overflows.

B~efly, the order statistics YCl>o Y<Zl• ••• , Y<Nl of N i.i.d. ran
dom Variables Yto yz, ... , YN are theY; 's sorted in increasing order
That is ·

The joint distribution of the order statistics of N i.i.d. con
tinuous random variables is

N

n flf(y;) ·
i=l

If liNt.., the initial expected interresponse time is not
significantly .larger than the constant buffer service ~ime ~.
responses arnve closely spaced and easily overflow the buffer.
The expected time to receive all N responses is the expected value
of the slowest of theN independent response instants,

E [y(N)l = A.-1 (1+2-1+ ... +N-1
),

the maximum of N i.i.d. , exponentially distributed random vari
ables.

Recall that the sum of exponentially distributed random
variables is itself exponentially distributed with rate equal to the
sum of the individual rates. Immediately after the multicast, but
before any recipient responds, the responses arrive at rate N A..
After the first response, this drops to (N -1)f.., and each

subsequent response decreases the future arrival rate by A..

Since responses require buffer service time ~. the buffer
overflows if any interarrival interval is shorter than ~· The proba
bility <I» that no two responses arrive within time ~. that is the pro
bability that no responses are lost, is the product of the probabili
ties that all N -1 interrarrival times exceed ~. Since y (i + l) arrives
with rate (N-i)A., the probability that the interval between Ytil and
Yti+ll exceeds the service time~ is

Pr [yi+t- y; > ~] = e-(N -i)).~. (1)

The probability <I» then is the product of the probabilities that all
interarrival intervals exceed~.

N~

N-1 . -~). ~j
<I»=lle-1\JA=e , .. =e-~AN(N-1)12.

j=l

We discover that the mean response time liA. must grow
quadratically with N to achieve a small probability of overflow.

The expected number of interarrival intervals shorter than
~ bounds the expected number of buffer overflows. We employ
the method of indicator variables to derive this upper bound,
which is a more convenient expression than the exact number of
overflows calculated later in this section.

Let the indicator variable/;(~) be

{

1 if (Yei+1l- Yeo):;; ~.
/;(~) = 0 otherwise.

The expected number of short intervals is
N-1 N-1 N-1

E[L /;(~)] = L E[/;(~)] = L Pr [YCi+ll- YCil:;; ~].
i=l i=l •'=1

(2)

The probability that <Yei+l)- Ye;J):;; IJ is given by (1). The
expected number of short intervals bo1D1.ds the expected number
of overflow losses, and grows tighter with decreasing expected
number of overflows. Keep in mind that the exponential
distribution's weight extends to infinity, an infinite horizon, and
additional losses are possible for responses that arrive after the
round's timeout expires. The expected number of losses is
bounded above by

~-1 N-1

E[Losses]SE[L /;(IJ)]= L (1-e-i).jl)
i=l j=l

(3)

2.3. Upper Bound for UN/D/1/1 Systems

In this case, each recipient i responds at instant Y; drawn
independently from the uniform distribution on the interval (0, 't).
The expected time to receive allN responses is the expected value
of the N 111 order statistic YtNl•

N't
N +1'

The probability density function of the order statistics of N uni
formly distributed random variables is

N!
f (Yetl• Yt2l• ... , YeNJ) = 7·

The probability of no buffer overflow, <I», equals the proba
bility that all N-1 interarrival intervals exceed ~. and can be
foiDl.d by evaluating the integral1

~-N~ ~-{N-1)~

<I»= !:!.l r f ... f dyN ... dy1.
~ 6 1>+~ ,.~+II

The first integral corresponds to the arrival time of the first
response. The lower limit of each subsequent integral is ~ greater
than its predecessor. This represents the constraint that each
interarrival period exceed ~- Integrating yields

cl»= ~ [7] (~i(N-1);(-1)' = [1- (N -1) !r (4)

We have calculated the probability <I» of no overflow loss
given the response time is uniformly distributed on (0, 't).
Employing indicator variable/;(~). defined in (2), we can bound
the expected number of responses lost to buffer overflow by the
expected number of interarrival intervals shorter than ~.

~-1 •-1 ~-1

E[L /;(~)] = L E[/;(~)]= L Pr[Yei+tl- Yeo:;;~]. (5)
i=l i=l i=l

Each term in summation (5) corresponds to an integral similar to
the one shown below, and it turns out that these integrals are
identical. The integral corresponding to the summation's last
term is

Substituting (6) into (5) and adding up terms, we find the expected
number of closely spaced responses, an upper bo1D1.d on the
number of losses, is

E[losses]S(/'/-1)(1-i:[~ (-1i (~);)
i=O i J 't

:;; (N -1) (1- (1- ~f).
't

(7)

We employed order statistics to arrive at the probabilities the
interrarrival interval exceeds ~· However there exists an elegant
proof which yields the same. Place n+1 points uniformly on the
circle with circumference 't. Cut the circle at one of these points
and label one end 0 and the other 't. From symmetry arguments,
one arrives at (7).

3. Overflowing Multiple Buffers

We begin this section multiple buffer systems by finding
the expected number of overflows when both the recipient
response time and the sender's buffer service time are distributed
exponentially, MN !M 11/b. Next we develop a dynamic program
that calculates overflow losses for a general i.i.d. response time
distribution with an exponentially distributed buffer service time,
GN !M !lib. Finally, we apply this program when the recipient's
response time distribution is uniform, UN IM !lib.

Figure 3 plots the number of overflows for various
numbers of recipients, numbers of buffers, and response time

1 This problem appears in volmne 2 of [12] as problem 24, Section
I.l3.

distributions of equal expected completion time YrN>· Notice how
the response time distribution significantly affects the expected
number of losses. This effect increases with the number of
buffers. We devote this section to deriving expressions that accu
rately predict this behavior.

3.1. Preassigned Response Instants, DN/M/1/b

Assign to each recipient a unique time k 0 at which it
schedules its response. We calculate the expected number of
losses by observing that a loss occurs if all b buffers are occupied
when a recipient responds. Define L. (s) as the expected number
of losses when n recipients respond, s buffers begin occupied, and
the first of the n responses arrives immediately.

HI

L.(s)= l:L._1(s+l-i)P,+1,;
j=()

b

L.(b)= 1 + l:L._1(b-i)Pb,;
j=()

i-1

P;,; = 1- l:P;j
j=IJ

In these equations, we sum over i, the number of buffers
that are emptied during time 0 before the next response arrives.
When the next arrival occurs, s+l-i buffers are full, 1 for this
arrival, s-i for the previously buffered arrivals that were not
served in the interim. The probability that i, i < s + 1, of the full
buffers are emptied is simply the probability that i Poisson
distributed events occur during time o. The probability that all
s+l are emptied is the probability that non of the events iSs
occur.

100

80

60

40

20

0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 1.0

Mean Buffer Service Tune

Figure 3. Multiple Buffer Overflow for
(N,b)={ (200,5),(200,10)) . MN !M !lib and UN !M !lib
systems.

3.2. MN/M/1/b Systems

The problem of finding the number of buffer overflows
given both exponential response and senlice time distributions is
relatively easy and can be solved in numerous ways. We begin by
drawing a two-dimensional Markov chain, where state (i ,))
means i responses are outstanding and j buffers are full (see Fig
ure 4). When b=l, we can write the expression for the expected
number of buffer overflows by inspection.

N-! ")._

E[losses] = L ~.
j=l 1.1.+ 1 II.

Alternatively, we can write a fast dynamic program [13] to count
the expected number of buffer overflows.

(8)

p - nA.
•.b- nA.+ uo(s)J.l.

where u0 is the unit step function.

This program can be quickly calculated bottom up. In the next
section we present a brute force technique that yields an exact
solution for general response time distributions.

3.3. GN/M/1/b Systems

The dynamic program below finds the number of buffer
overflows suffered by multiple buffer, general response time,
exponential service time systems. The calculation is reminiscent
of G!M!l!b loss system analysis of classical queueing theory.
Let L. (s, t) be the expected number of overflows given that s of
the b buffers start full, the last arrival occurred at timet, and n
additional arrivals remain outstanding. L. (s, t) is an integral
over the arrival time, x, of the next arrival. Since all arrivals are
drawn from a common response time distribution, we can easily
express the probability density function, f •, of the next arrival.

The probability distribution function of each of the remain
ing n responses, conditioned on the arrival time t of the last
arrival, F (y I y > t), is

Pr(y Sx I y >t)= P(y Sx) = F(x)
P(y >t) 1-F(t)

Similarly,

I >t) = P(y >x) = 1-F(x).
Pr (y > x y P (y > t) 1 - F (t)

The probability density function of the next arrival is then the pro
duct of this density and the probability that the remaining n-1
responses arrive later, all multiplied by n, the number of ways to
select the first arrival.

x _ n 1 - F (x) f (x)
[]

n-1

/.()- 1-F(t) 1-F(t)

We now unveil the recursive expression for the expected
number of overflows, L. (s, t).

Bullion Occupied
Number

Figure 4. Markov chain that corresponds to the M 20!M /1/3
system.

Ln (s, t) = (9)

' J fn(X) :I:Ln-!(s+1-i,x)p>+!,i(X -t) dx.
I i=O

Ln (b, t)=

Lo (s, t) = 0.

i<s,

i=s.

The sums are over the nwnber of buffers serviced before the next
response arrives at time x. We swn the expected nwnber of
overflows that occur when the remaining n-1 responses arrive

given the s + 1 - i buffers are occupied. The nwnber s + 1 - i
proceeds from the s buffers previously occupied, one more for the
new arrival, less the i guffers that were served during timex that
no responses arrived.

When all b buffers are full, then a loss occurs with proba
bility Ph .o. the probability that no buffers are emptied before the
next response arrives. Although formidable in appearance, we can
integrate expression (9) in polynomial time. For example, we
now apply (9) to the case of uniformly distributed response times.

3.4. UN/M/1/b Systems

We can more easily calculate the solution to dynamic pro
gram (9) for uniformly distributed response times than for any
other response time distribution. Exploiting the fact that the
arrival distribution of the remaining responses is also uniform
when it is conditioned on knowing the arrival instant of the most
recent response, we redefine Ln (s, t) to be the expected number
of losses when n responses remain outstanding given that s
buffers start full and the remaining responses arrive uniformly on
(0, t).

(10)

i:Ln-J(s-i+1,t-x)p,,;(x)l dx
i=O J

Ln(b, t)= !!.J t -x :LL .. -!(b-i+1,t-x)p,,i(x)
1 [[] n-1 b

t 0 t i=l

For single buffer systems with uniform responses on (0, -t),
this dynamic programs yields the closed form solution

n!(n-l){(J.l.'tt1 i (J.l.'tti(-1YI(n-1-i)!
i=O

Although closed form solutions for arbitrary nwnbers of
buffers (b * 1, b 'I'N- 1) are not possible, we can always
integrate (10). For example, expected overflow losses for N=4
recipients that arrive on (0, 1) and with a b-buffer system are
given by

b=l: 12((J.i.-1-3J.L-2+4L-3-6J.L_..) + e-11 (6J.L-4)).

b=2: 12((2J.L-2-6J.L-3+4J.L-4)

Although the uniform response time distribution suffers
fewer expected losses than the exponential distribution, it does not
minimize buffer overflow. Finding the optimal, i.i.d. response
time distribution that minimizes the nwnber of buffer overflows

depends on the service distribution, the number of buffers, the
number of responses, and the number of buffers that start full.
We consider this problem in Section 4.

4. Finding the Backoff Algorithm and Round Timeouts

In many situations, all the recipients calculate and transmit
their responses to the sender within a brief time of each other, and
the sender loses some or many of these responses, and must
request that certain sites repeat their responses. Demanding that
each recipient delay its response for some random time alleviates
the buffer overflow. We call this delay recipient backoff, and, in
this section, construct an optimal backoff algorithm based on each
recipient's measured response time distribution. Our algorithm
suffers the fewest possible expected number of overflows, given
that all recipients must respond before the round's timeout
expires. We employ the backoff algorithm to minimize our
multicast's cost metric, a linear, weighted sum of the number of
broadcasts, number of responses, and overall elapsed time
(latency). Alternatively, the sender can choose the number of
broadcast-based rounds beforehand, and calculate each round's
timeout immediately prior to broadcasting the round, so as to
minimize the overall latency.

Finding the i.i.d. arrival time distribution that minimizes
buffer overflow, given the number of recipients, number of
buffers, round timeout, and buffer service distribution, we believe,
is an unsolved problem. We call this the Dynasty Problem2 and
begin by solving it for two recipients, one buffer, and exponential
buffer service time distribution. We note that its solution is com
posed of a uniform and a bimodal distribution, and our simulation
study suggests that such a distribution is optimal for any number
of recipients and buffers.

4.1. Optimal Response Time Distribution, Two Responses,
One Buffer

Consider the problem of finding the common i.i.d.
response time density h (y), 0 S y S 1, that mirtimizes the number
of overflows of a single buffer server when there are two
responses, and buffer service time is exponentially distributed
with mean 1/Jl. Or equivalently, find the common i.i.d response
time density that minimizes the probability that the first response
is still in service when the second arrives. If it is, the second
response overflows the buffer, otherwise it does not.

The expected number of overflows, or this probability, is
1 1

2 r f e-c,.-,.)!1h(yz)h(yt)dyzdy1 (11)
6,.

constrained by the equations that make h (y) a probability density
function

1 1

2Jf h(yz)h(y1)dy1dy 2 =1.
0 J•

and

h (y) ~ 0 , 0 S y S1 .

Although this appears solvable by the calculus of variations [14],
the optimal distribution h (y) does not have continuous first and

2The name DyNlSty recognizes a Berkeley restaurant, dubiously
honored with the city's worst health inspection record.

second derivatives, a requirement for that technique. Instead, we
transform (11) into a discrete optimization problem by subdivid
ing (0, 1) into M identical subintervals, and apply the method of
Lagrange multipliers [15] to find the optimal, discrete distribution.

Denote the number of losses by L (p).
M M M

L(p)=l:P;2+2l: L PiPie-U-iJIJ.IM.
i=l i=t I=i+l

We introduce Lagrange multipliers to incorporate the constraint
equations.

M

l (p,A.) = L (p) +A. ((LPi)- 1).
i=1

v, l(p,A.) = 0.

We solve this system of M + 1 linear equations for the discrete
solution p. The endpoint probabilities p 1 and PM are equal, and
the interior-point probabilities are equal.

ei'IN

ei'IM -1
pz= ... =PM-t= M(ei"M-1)+2.

Taking the limit as integer M becomes large and substituting
(1+1lfM) for ei'IM, we find the weight at the interval's endpoints
is conserved

1
P1=PM=--,

Jl+2

and the probability density of the interior points remains uniform.
The optimal i.i.d continuous density function is

h(y)= B(y)+Jl+0(1-y).
Jl+2

(12)

where B(y) is the Dirac delta function.

We see h (y) is the superposition of a uniform distribution
and two impulses, one at either endpoint. As the mean service
time l!Jl decreases, the optimal distribution approaches the uni
form distribution. As the mean service time increases, the optimal
distribution approaches the bimodal distribution with equal weight
of one half at the interval's endpoints 0 and 1.

We find the expected number of losses by carrying out
integral (11), substituting (12) for h (y),

2
E [losses] = -

2
- .
+Jl

We plot the expected number of losses for the optimal distribution
(12), the uniform distribution, and the bimodal distribution with
probability one half at each end point in Figure 5.

The bimodal arrival distribution always outperforms the
uniform arrival distribution [17], showing more improvement as
the number of recipients approaches the number of buffers.
Assume we knew the optimal arrival distribution on an interval
(0, 't). If we found a backoff algorithm that mapped each site's
measured response time distribution into the optimal response
time distribution, then we would minimize buffer overflow.

3 A different problem is solved in [16] using similar methods.

ExP.ected Number of Buffer Overflow Losses
l.O ---·r··--r·---1----T--·-r·--T----r·--r--·-r·---1
o.9 ··j·····t····j····t····t-·t--··j····t····t··--1
o.8

- r·-·r···-r·T--T·T-·r··r--:-·--1
o.

7
--- ---·c:r::r::::r::r:::r::r:r::J

o.
6

. i ~~~ i i i i
0.5 -··r·· -T----

1
0.4 ----~-----~---- - · ~arnr----r-r·r--1

o.3 ----r----r---r----r - --~---·t··--r----r----1

0.2 ---- 1-----r----1-----~---·t : · ---~
: : : : : : : : :

0 I ---+---~---+--+----i----+----i----+----1-----l

. i i i i i i i i i i
0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Service Rate 1.1.

Figure 5. Losses versus response time distribution for 2
responses, exponential buffer service, and one buffer.

4.2. Our Backoff Algorithm

Since the recipients' response time distributions are neither
identical to one another, nor equal to some well characterized dis
tribution, they must be individually measured. Denote recipient
i 's measured response time distribution by F; and its site
dependent backoff algorithm by G;. Denote recipient i's
observed response time to the multicast by y;, and, finally, assume
the optimal arrival distribution that minimizes buffer overflow
given N recipients, round timeout 't, and b buffers is known, and
denoted by H (N, b, 't). In this section we construct an optimal,
backoff function G; = G; (F;, 't, y;) that minimizes the expected
number of buffer overflows. In the next section we show how to
select the round's timeout 't.

We want a backoff function G; such that, when added to
the site's response time y;, it transforms the site's response time
distribution F; into the optimal arrival distribution H. If y;
exceeds 't then the response y; becomes ready during some subse
quent round of multicast, and we delay it no further. In real sys
tems late responses may be processed; here, we consider them
lost. We construct our site specific backoff function G; as fol
lows. It is the time difference between the optimal distribution and
the response time distribution corresponding to the observed
response time. We defer considering response time distributions
F; that lie beneath H (contrast Figure 6 and Figure 8) until later in
the section.

Suppose the optimal arrival distribution were uniform and
the service time distributions F; lie above it. The equation below
would give the site specific backoff functions.

G·(y·)= (Y; F;(y;) O)
1 1 max F(-r) , . (13)

In Figure 6 we plot probability distribution functions H (supposed
uniform), F 1 (an exponential), and F 2 (another uniform), and the
backoff functions for site one and two, G 1 and G 2.

1.00

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00+---+---+---+----t
0.0 0.5 1.0 1.5 20

Arrival Epoch y

Figure 6. Several backoff functions G;.

We want to map F I> exponentially distributed with param
eter A., onto the uniform distribution on (0, 't). Since the exponen
tial distribution's tail is infinitely long, some responses may arrive
after the round's timeout 't expires. Assume such responses are
lost. However, every response that arrives before 't appears to
arrive uniformly on (0, 't). Applying equation (13), the backoff
function is

We want to map F :z, uniformly distributed on (0, b), onto
the uniform distribution on (0, 't). G 2 depends on whether the b
exceeds or falls short of 't. If b exceeds 't, we assume responses
that arrive after the round's timeout 't expires are lost, and we do
not further delay them.

{
0 ifb>'t,

Gz(yz)= y 2(-r-b)lb otherwise.

If some third site exhibited an instantaneous response time,
F 3, then the backoff function would simply be a uniformly distri
buted random variable.

G3(y3) =uniform (0, 't).

This foreshadows the section on discontinuous response time dis
tributions. If any F; contains a discontinuous jump, then G; maps
this jump onto a uniformly distributed random backoff time of an
appropriate duration.

4.3. Selecting a Round's Timeout

The problem of selecting a round's timeout is related to the
problem of detecting failed sites, mentioned earlier. Recall that
the sender determines that a site has failed if it fails to respond to
several transmissions. Existing protocols attempt 4 or 5
retransmissions with timeouts either determined by binary
exponential backoff or simply set to a few seconds, or tens of
seconds. If a recipient fails no respond after all of these attempts
pass, the sender assumes it has failed. On one hand, if we set the

timeouts too short, each round results in many buffer overflows,
and 5 rounds may be insufficient to determine site failure. On the
other hand, if we set the timeouts too lqng, we needlessly increase
the multicast's latency. Selecting timeouts poses difficult optimi
zation problems, which we illustrate with several examples.
Let's assume that recipients respond uniformly on a prescribed
interval.

Example. U10/D/1/1, Two Rounds.

Consider a two-round multicast We want to minimize the
latency, 't1 + 'tz, such that after the second round, the probability
that one or more responses remain outstanding due to buffer
overflow is less than £. We permit the second round timeout to
depend on the number of overflows experienced during the first
round. We must solve the optimization problem

such that

<II(k, 'tz(k)) > 1-£. k = o ... n-1.

where <II is given by (4).

(14)

In essence, we must select the optimal value for 't1 such
that the sum of 't1 and E['t7,] is minimized. For this we need the
discrete probability distribution of losing k responses, P1o which
is in general difficult to calculate. As this example is no excep
tion, we choose to approximate this system's distribution by the
binomial distribution. (In [17] we employ a better, albeit more
sophisticated approximation).

The binomial approximation says that a response overflows
with probability that is independent of all other responses. We
made a similar approximation in Section 2.3 where we bounded
the expected number of losses that this system experiences. The
probability p that a given responses overflows the sender's buffer
is bounded by the second term of ((7)).

p =(1- ~f.
't

Since only N-1 of the possible N responses can overflow, the
binomial approximation to the desired P1 is

In Figure 7 we constrast this approximation with the distribution
obtained through simulation. It lies to the right of the value
obtained by simulation because (7) is an upper bound on the
number of losses.

If the sender loses k responses during the first round, then
it must choose 'tz such that the probability <II that it collects the
remaining k responses during the second round exceeds 1 - £.

We invert (4) and obtain

(k) = 1 - (1 - £)Ilk
'tz k - 1

We can now calculate E['t7,].
n-1

E['t7,] = L P1 't2(k).
k=O

Applying this to the U201D /1/1 system, we examine how
the choice of the first round timeout 't1 affects the expected value

Probability

0.3 _.r-----------~

0.2

0.1

0 ~~ .. --- -----
0 5 10 15

Number of losses

Figure 7. Probability distribution, U 20!d!lll, -t=1, service
time [3=.01. The approximation is shaded.

of the total latency, E['t1 + 't7,]. In Figure 8 we plot total latency
versus the choice of 't1• When 't1 is much smaller than optimal,
the expected latency approaches the latency of a one round multi
cast constrained by the same condition that <II > 1 - £. When 't1 is
much larger than optimal, the expected latency approaches 't1.

Total Latency
·-· ·---·r ----------r·-·-------1------- --·r ------- ---~ 2000

1600 -- ---··r=·I-%1·--------t"·-----·t··------i
! i ! i l

-- r::::I::~:-r::-::--r·----;
1200

800

• ~ , • % - --r------r-----1
oL---~--~~--~--_.--~

200 400 600 800 1000
First Round Timeout

Figure 8. Total latency of a two round multicast as a func
tion of the first round timeout 't1• U1!JID /111, Service time
~ = 1. One round multicasts require 't of 38,000 (£ = 1%),
4,600 (£ = 5%), and 3,600 (£ = 10%).

S. Conclusions

Existing methods to analyze finite buffer systems [2] do
not apply to multic~t; while the overflow analyses presented in
this paper provide insight into making multicast fast. Single
buffer systems treated in Section 2 yield simple expressions for
the expected number and distribution of losses. Solving these sys
tems leads to the techniques used to solve multiple buffer systems.
Overflow of multiple buffers, treated in Section 3, is frequently a
problem of multicast in distrubted systems. It has been reported in
the literature as back-to-back packet losses of Ethernet interfaces,
and can occur within the layers of software between the network
interface and the user program. The backoff algorithm and the
timeout selection problem presented in Section 4 minimize the
latency of reliable multicast, and minimize buffer overflows
regardless of whether they occur at the network interface or
between user-system software boundaries [8] (recall Figure 1).

These results can help system designers optimize multicast
protocols, decide on the number of buffers to devote to a multicast
sender, decide the cut off between using hardware broadcast and
unicast primitives, and choose the number of rounds of multicast.
They place selection of the round timeout on firm mathematical
ground. Beyond the local area network, these techniques apply
overflow at network gateways caused by internet multicast [18]
and overflow at LAN bridges caused by extended LAN multicast.

We have been able to eliminate several of the unrealistic
assumptions mentioned in Section 1.1, to solve the Dynasty prob
lem exactly for one buffer systems, and to calculate many of the
overflow distributions not presented in this paper. In the furture,
we intend to implement the backoff algorithm efficiently and
determine how far from optimal a practical implementation must
lie.

Acknowledgments

I wish to thank Domenico Ferrari for his support and
confidence, and Carl Ponder and George Shanthikwnar for several
useful discussions. I am grateful to my office mates and friends
Riccardo Gusella, Venkat Rangan, Mark Sullivan, Shin-Yuan
Tzou, and Dinesh Verma for their comments on early versions of
this paper and for suffering my exuberant interruptions.

References

1. D. Clark, "The Structuring of Systems Using Upcalls",
lOth Symp. on Operating System Prin. 19, 5 (Dec 1985),
171-180.

2. H. G. Perros and T. Altiok, "Approximate Analysis of
Open Networks of Queues with Blocking: Tandem
Configurations", TSE 12, 3 (March 86), 450-n461. North
Carolina State University.

3. J. L. Wang and J. A. Silvester, "Throughput Optimization
of the Adaptive Multi-Receiver Selective-Repeat ARQ
Protocol Over Broadcast Links'', Proceedings of /CCC, Tel
Aviv, Israel, October 1988.

4. A. Ganz and I. Chlamtac, ''Queueing Analysis of Finite
Buffer Token Networks", S/GMEIRJCS, Santa Fe, New
Mexico, May 1988, 30-36.

5. J. Chang and N. F. Maxemchuk, "Reliable Broadcast
Protocols", Trans. Computer Systems 2, 3 (Aug. 1984),
251-273.

6. D. R. Cheriton and W. Zwaenepoel, "Distributed Process
Groups in the V Kernel", Trans. Computer Systems 3, 2
(May 1985), 77-107.

7. E. J. Feinler, 0. J. Jacobsen, M. K. Stahl and C. A. Ward,
DDN Protocol Handbood, Defense Communications
Agency, December 1985.

8. L. F. Cabrera, E. Hunter, M. J. Karels and D. A. Mosher,
"User-Process Communication Performance In Netwoks of
Computers", TSE 14, 1 (Jan. 1988), 38-53.

9. R. Gusella and S. Zatti, "An Election Algorithm for a
Distributed Clock Synchronization Program", IEEE 6th
International Conference on Distributed Computing
Systems, Boston, May 1986.

10. M. M. Theimer and K. A. Lantz, Finding Idle Machines in a
Workstation-based Distributed System, 8th International
Conference on Distributed Computing Systems, June 1988.

11. S. M. Ross, Stochastic Processes, John Wiley & Sons, New
York, NY, 1983.

12. W. Feller, An Introduction to Probability Theory and Its
Applications Volume 1 and 2, John Wiley & Sons, New
York, NY, 1970.

13. S. M. Ross, Introduction to Stochastic Dynamic
Programming, Academic Press, New York, NY, 1983.

14. R. Weinstock, Calculus of Variations, McGraw-Hill, New
York, NY, 1952.

15. M. Avriel, Nonlinear Programming: Analysis and Methods,
Prentice Hall, Englewood Cliffs, NJ, 1976.

16. B. Simons and L. G. Votta, "The Optimal Retry
Distribution for Lightly Loaded Slotted Aloha Systems",
IEEE Transactions on Communications COM-33, 7 (July
1985), 724-725.

17. P. B. Danzig, "Buffer Overflow in Multicast", IEEE Trans.
on Computers Special Issue on Performance Evaluation,
(Submitted) .

18. S. Deering, "Multicast Routing in lntemetworks and
Extended LANSs", S/GCOMM '88 Symposium, Aug. 16-
19, 1988, 55-64.

